Geo-Parcel Based Crop Identification by Integrating High Spatial-Temporal Resolution Imagery from Multi-Source Satellite Data
نویسندگان
چکیده
Geo-parcel based crop identification plays an important role in precision agriculture. It meets the needs of refined farmland management. This study presents an improved identification procedure for geo-parcel based crop identification by combining fine-resolution images and multi-source medium-resolution images. GF-2 images with fine spatial resolution of 0.8 m provided agricultural farming plot boundaries, and GF-1 (16 m) and Landsat 8 OLI data were used to transform the geo-parcel based enhanced vegetation index (EVI) time-series. In this study, we propose a piecewise EVI time-series smoothing method to fit irregular time profiles, especially for crop rotation situations. Global EVI time-series were divided into several temporal segments, from which phenological metrics could be derived. This method was applied to Lixian, where crop rotation was the common practice of growing different types of crops, in the same plot, in sequenced seasons. After collection of phenological features and multi-temporal spectral information, Random Forest (RF) was performed to classify crop types, and the overall accuracy was 93.27%. Moreover, an analysis of feature significance showed that phenological features were of greater importance for distinguishing agricultural land cover compared to temporal spectral information. The identification results indicated that the integration of high spatial-temporal resolution imagery is promising for geo-parcel based crop identification and that the newly proposed smoothing method is effective.
منابع مشابه
Combined use of multi-seasonal high and medium resolution satellite imagery for parcel-related mapping of cropland and grassland
A key factor in the implementation of productive and sustainable cultivation procedures is the frequent and area-wide monitoring of cropland and grassland. In particular, attention is focused on assessing the actual status, identifying basic trends and mitigating major threats with respect to land-use intensity and its changes in agricultural and semi-natural areas. Here, multi-seasonal analyse...
متن کاملObject-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images
As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...
متن کاملIn-Season Crop Mapping with GF-1/WFV Data by Combining Object-Based Image Analysis and Random Forest
Producing accurate crop maps during the current growing season is essential for effective agricultural monitoring. Substantial efforts have been made to study regional crop distribution from year to year, but less attention is paid to the dynamics of composition and spatial extent of crops within a season. Understanding how crops are distributed at the early developing stages allows for the tim...
متن کاملMapping of Agricultural Crops from Single High-Resolution Multispectral Images - Data-Driven Smoothing vs. Parcel-Based Smoothing
Mapping agricultural crops is an important application of remote sensing. However, in many cases it is based either on hyperspectral imagery or on multitemporal coverage, both of which are difficult to scale up to large-scale deployment at high spatial resolution. In the present paper, we evaluate the possibility of crop classification based on single images from very high-resolution (VHR) sate...
متن کاملExposure Estimation from Multi-Resolution Optical Satellite Imagery for Seismic Risk Assessment
Given high urbanization rates and increasing spatio-temporal variability in many present-day cities, exposure information is often out-of-date, highly aggregated or spatially fragmented, increasing the uncertainties associated with seismic risk assessments. This work therefore aims at using space-based technologies to estimate, complement and extend exposure data at multiple scales, over large ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 9 شماره
صفحات -
تاریخ انتشار 2017